Структура реляционной модели данных. Реляционная модель данных

Отношения (таблицы) отвечают определенным условиям целостности . РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных.

  • Аспект (составляющая) обработки (манипулирования) - РМД поддерживает операторы манипулирования отношениями (реляционная алгебра , реляционное исчисление).
  • Кроме того, в состав реляционной модели данных включают теорию нормализации .

    Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation ). В качестве неформального синонима термину «отношение» часто встречается слово таблица . Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране. Некорректное и нестрогое использование термина «таблица» вместо термина «отношение» нередко приводит к недопониманию. Наиболее частая ошибка состоит в рассуждениях о том, что РМД имеет дело с «плоскими», или «двумерными» таблицами, тогда как таковыми могут быть только визуальные представления таблиц. Отношения же являются абстракциями, и не могут быть ни «плоскими», ни «неплоскими».

    Для лучшего понимания РМД следует отметить три важных обстоятельства:

    • модель является логической, то есть отношения являются логическими (абстрактными), а не физическими (хранимыми) структурами;
    • для реляционных баз данных верен информационный принцип : всё информационное наполнение базы данных представлено одним и только одним способом, а именно - явным заданием значений атрибутов в кортежах отношений; в частности, нет никаких указателей (адресов), связывающих одно значение с другим;
    • наличие реляционной алгебры позволяет реализовать декларативное программирование и декларативное описание ограничений целостности, в дополнение к навигационному (процедурному) программированию и процедурной проверке условий.

    Принципы реляционной модели были сформулированы в -1970 годах Э. Ф. Коддом (E. F. Codd) . Идеи Кодда были впервые публично изложены в статье «A Relational Model of Data for Large Shared Data Banks» , ставшей классической.

    Строгое изложение теории реляционных баз данных (реляционной модели данных) в современном понимании можно найти в книге К. Дж. Дейта . «C. J. Date. An Introduction to Database Systems» («Дейт, К. Дж. Введение в системы баз данных»).

    Наиболее известными альтернативами реляционной модели являются иерархическая модель , и сетевая модель . Некоторые системы, использующие эти старые архитектуры, используются до сих пор. Кроме того, можно упомянуть об объектно-ориентированной модели , на которой строятся так называемые объектно-ориентированные СУБД , хотя однозначного и общепринятого определения такой модели нет.

    Примечания

    Литература

    • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
    • Томас Коннолли, Каролин Бегг Базы данных. Проектирование, реализация и сопровождение. Теория и практика = Database Systems: A Practical Approach to Design, Implementation, and Management Third Edition. - 3-е изд. - М .: «Вильямс», 2003. - С. 1436. - ISBN 0-201-70857-4
    • Кузнецов С. Д. Основы баз данных. - 2-е изд. - М .: Интернет-Университет Информационных Технологий; БИНОМ. Лаборатория знаний, 2007. - 484 с. - ISBN 978-5-94774-736-2
    • Когаловский М.Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - С. 800. - ISBN 5-279-02276-4

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Реляционная модель данных" в других словарях:

      Разработанная Э.Коддом в 1970г. логическая модель данных, описывающая: структуры данных в виде (изменяющихся во времени) наборов отношений; теоретико множественные операции над данными: объединение, пересечение, разность и декартово произведение; … Финансовый словарь

      реляционная модель данных - Модель данных, основанная на представлении данных в виде набора отношений, каждое из которых представляет собой подмножество декартова произведения определенных множеств, и манипулировании ими с помощью множества операций реляционной алгебры или… …

      Реляционная модель данных - 61. Реляционная модель данных Модель данных, основанная на представлении данных в виде набора отношений, каждое из которых представляет собой подмножество декартова произведения определенных множеств, и манипулировании ими с помощью множества… … Словарь-справочник терминов нормативно-технической документации

      Реляционная база данных база данных, основанная на реляционной модели данных. Слово «реляционный» происходит от англ. relation (отношение). Для работы с реляционными БД применяют реляционные СУБД. Использование реляционных баз… … Википедия

      реляционная база данных - База данных, реализованная в соответствии с реляционной моделью данных. [ГОСТ 20886 85] реляционная БД База данных, логически организованная в виде набора отношений ее компонентов. Характерной особенностью реляционной базы данных является… … Справочник технического переводчика

      Данных логическая модель данных, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных. Структурный аспект (составляющая) данные в базе данных представляют собой… … Википедия

      В классической теории баз данных, модель данных есть формальная теория представления и обработки данных в системе управления базами данных (СУБД), которая включает, по меньшей мере, три аспекта: 1) аспект структуры: методы описания типов и… … Википедия

      Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

      Необходимо перенести в эту статью содержимое статьи Сетевая СУБД и поставить оттуда перенаправление. Вы можете помочь проекту, объединив статьи (cм. инструкцию по объединению). В случае необходимости обсуждения целесообразности объединения,… … Википедия

      - (англ. Associative model of data) это предложенная Саймоном Уильямсом:2 модель представления данных, в которой база данных состоит из двух типов структур данных элементов и ссылок, хранимых в единой однородной общей… … Википедия

    Книги

    • Базы данных: Учебник. Кузнецов С.Д. , Кузнецов С.Д. , Учебник создан в соответствии с Федеральным государственным образовательным стандартом по направлению подготовки `Прикладная математика и информатика` (квалификация `бакалавр`). В учебнике… Категория: Учебники для ВУЗов Серия: Университетский учебник Издатель: Академия , Производитель:

    Введение……………………………………………………… 2

    Реляционная модель данных………………………………………4

    Цели и задачи проектирования………………………………….8

    Структура процесса проектирования………………………….9

    Технология ведения информационной системы………………..11

    Заключение……………………………………………………13

    Список литературы…………………………………………...14

    ВВЕДЕНИЕ

    Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий. Не у кого не вызывает сомнения тот факт, что движение к информационному обществу - это путь в будущее человеческой цивилизации.

    По своей глубокой сути информатизация представляет собой процесс преобразования человеком среды своего существования, биосферы в ноосферу, результатом которого будет создание высокоразвитой информсреды. Этот процесс затрагивает как среду обитания, так и собственно общество, самого человека.

    Глубина совершаемых преобразований порождает проблемы, от своевременного и эффективного решения которых зависит не только ход информатизации, но при неблагоприятном исходе - существование общества в целом и человека как биологического вида.

    Проблемы информатизации производства и обработки информации, то есть проблемы создания и развития современного машинного производства в информационной сфере, порождены противоречием между необходимостью своевременного использования во всех сферах человеческой деятельности больших объемов высококачественной информации и невозможностью оперативно формировать такие объемы с помощью традиционных информационных средств, технологий и линий связи. В эту группу вопросов, в первую очередь, входят материально- техническая, технологическая проблемы и проблемы связи. Россия до сих пор остается великой державой - и гигантской территорией, и мощной индустриальной базой, и в то же время продолжает переживать глубокий политический и социально-экономический кризис, который может перейти либо в долговременный распад на основе трудно обратимого процесса суверенизации регионов, либо через временную стабилизацию в процесс, хотя и медленного, но достаточно устойчивого экономического и социального прогресса, способного обеспечить ей важную роль мировой державы и достойный уровень жизни ее населения.

    Развитие и широкое применение информационных и коммуникационных технологий (далее - ИКТ) является глобальной тенденцией мирового развития последних десятилетий. Применение современных технологий обработки и передачи информации имеет решающее значение как для повышения конкурентоспособности экономики и расширения возможностей для интеграции ее в мировую систему хозяйства, так и для повышения эффективности процессов государственного управления на всех уровнях власти, на уровне местного самоуправления, в государственном и негосударственном секторах экономики,.

    Не менее важным результатом распространения ИКТ и проникновения их во все сферы общественной жизни является создание технологических предпосылок для развития гражданского общества за счет реального обеспечения прав граждан на свободный и оперативный доступ к информации через глобальную сеть Интернет.

    Россия, несмотря на высокие темпы развития информационных технологий в последнее десятилетие, не смогла обеспечить сокращение разрыва с промышленно-развитыми странами в уровне информатизации экономики и общества. Отчасти такое положение вызвано общеэкономическими причинами (затяжной кризис в экономике, низкий уровень материального благосостояние большинства населения и т.п.). Вместе с тем, недостаточное развитие ИКТ в России определяется целым рядом факторов, создающих искусственные препятствия для ускорения информатизации, для широкого внедрения и эффективного использования ИКТ в государственном и негосударственном секторах экономики, для развития отечественного сектора по производству ИКТ. К числу таких негативных факторов относятся:

    Несовершенная, неполная и устаревшая нормативно-правовая база, разрабатывавшаяся без учета возможностей, предоставляемых современными информационными технологиями, изначально ориентированная на ограничительный подход по отношению к доступу граждан и хозяйствующих субъектов к информации;

    Недостаточное развитие современных информационных технологий в области государственного управления, создающее барьеры для ускоренного распространения ИКТ в остальной части экономики и общества; неготовность органов власти всех уровней к применению эффективных технологий управления и организации взаимодействия с гражданами и хозяйствующими субъектами;

    Затратный, не стимулирующий эффективный возврат инвестиций характер существующей практики использования бюджетных средств, выделяемых на реализацию программ информатизации;

    Недостаточное внимание к уровню подготовки кадров как в области создания, так и в области использования информационных технологий;

    Барьеры на пути вхождения российских предприятий ИКТ сектора на внутренний российский и мировой рынки из-за излишней зарегулированности экономической деятельности, требований обязательной, часто избыточной, сертификации и лицензирования видов деятельности;

    Высокий уровень монополизации в области инфраструктуры телекоммуникаций, являющийся следствием высоких входных барьеров и приводящий, в отсутствии должного регулирования, к нерыночным перекосам в тарифной политике;

    Узко-техническое понимание роли и возможностей ИКТ, низкая культура работы с ИКТ.

    Проблемы, решаемые в рамках настоящей федеральной целевой программы, базируются на приоритетах и целях стратегии социально-экономического развития России на период до 2010 года и отвечают критериям формирования перечня федеральных целевых программ, начиная с 2002 года, одобренным Правительством Российской Федерации на заседании 21 сентября 2000 года, протокол № 31.

    Процессы информатизации уже активно идут на всех уровнях. Многие мероприятия, направленные на развитие информационных технологий, реализуются или планируются к реализации в рамках других федеральных, региональных и ведомственных программ (например, ФЦП "Развитие электронной торговли в России на 2002 – 2006 годы", ФЦП "Развитие единой информационно-образовательной среды Российской Федерации в 2002-2006 годы", ФЦП "Создание и развитие информационно-теллекоммуникационной системы специального

    назначения в интересах органов государственной власти на 2001-2007 годы" и т.д.). В этом аспекте ФЦП "Электронная Россия на 2002-2010 годы" (далее – Программа) призвана не только дополнить другие программы в части формирования адекватной институционально-правовой среды для ИКТ-индустрии, развития инфраструктуры публичных сетей доступа и обеспечения эффективного взаимодействия государства и общества на основе широкого внедрения ИКТ, но и будет выполнять ряд более общих, координирующих функций по отношению к другим программам. В Программе будут, в частности определяться общие концептуальные направления развития ИКТ (основные принципы, общие стандарты и типовые решения по реализации различных проектов и т.д.) как одного из основных направлений социально-экономического развития страны. Реализация общих концептуальных направлений развития ИКТ будет осуществляться преимущественно в различных федеральные, ведомственные и региональных программах.

    ФЦП не только предлагает решения очевидных проблем, она ставит целый ряд новых. Некоторые из этих проблем не могут быть решены в рамках "Электронной России 2002-2010". Для того, например, чтобы при помощи информационных технологий приблизить российскую систему образования к стандартам развитых стран Запада, разрабатывается программа "Развитие единой образовательной информационной среды на 2002-2006 гг.". И требуется детальное обсуждение этих проблем. Выражаем надежду, что проект "Электронная Россия" станет удобной площадкой для начала такого обсуждения, в котором смогут принять участие не только специалисты, представляющие государственный аппарат и российский ИТ-рынок, но и все, кто осознает степень важности поставленных программой вопросов.

    РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

    В соответствии с реляционной моделью база данных представляется в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры и реляционного исчисления. В реляционной модели операции над объектами базы данных имеют теоретико-множественный характер.

    Концепции реляционной модели данных связаны с именем известного специалиста в области систем баз данных Е. Кодда. Именно поэтому реляционную модель данных часто называют моделью Кодда.

    ОРГАНИЗАЦИЯ ДАННЫХ

    Слово «реляционная» происходит от английского relation - отношение. Для пояснения математического понятия «отношение» вспомним два определения.

    Декартово произведение. Пусть D1, D2,…D n - произвольные конечные множества и не обязательно различные. Декартовым произведением этих множеств D1 Х D2 Х … Х D n -называется множество n-к вида: , где d1 принадлежит D1, d2 - D2 , а d n -D n .

    Рассмотрим простейший пример. Пусть первое множество состоит из двух элементов D1= {а1, а2}, второе-из трех: D2 ={b1, b2, b3}, Тогда их декартово произведение есть: D1 Х D2 = {а1 b1 ,а1 b2, а1b3, а2 b1, а2 b2, а2b3}.

    Отношение. Отношением R, определенным на множествах D1, D2,…D n , называется подмножество декартова произведения D1 Х D2 Х … Х D n . При этом множества D1, D2,…D n называются доменами отношения, а элементы декартова произведения - кортежами отношения. Число n определяет степень (арность) отношения, а количество кортежей - его мощность.

    Отношения удобно представлять в виде таблиц. При этом строки таблицы соответствуют кортежам, а столбцы - атрибутам. Каждый атрибут определен на некотором домене. Доменом называют множество атомарных значений. Несколько атрибутов отношения могут быть определены на одном и том же домене. Атрибут определяет роль домена в отношении.

    Атрибуты разных отношений также могут быть определены на одном и том же домене.

    Атрибут, значения которого идентифицируют кортежи, называется ключом (ключевым атрибутом).

    В некоторых отношениях кортежи идентифицируются конкатенацией значений нескольких атрибутов. Тогда говорят, что отношение имеет составной ключ. Отношение может содержать и несколько ключей. Один из ключей отношения объявляется первичным. Значения первичного ключа не могут обновляться. Все прочие ключи отношения называются возможными ключами.

    Отметим важную особенность реляционной модели данных. Если в сетевых и иерархических моделях данных для отражения ассоциаций между записями использовались групповые отношения, то в реляционной модели данных такого понятия не существует. Для отражения ассоциаций между кортежами отношении используется дублирование их ключей.

    Атрибуты, представляющие собой копии ключей других отношений, называются внешними ключами.

    Перечень атрибутов отношения и его свойства определяет схему отношения. Два отношения называются односхемными, если они построены но единой схеме.

    Первоначальная модель Кодда содержала небольшой набор средств ограничения целостности: не допускались кортежи с одинаковыми значениями первичного ключа и обеспечивалась возможность наложения ограничений на значения доменов и, следовательно, атрибутов. Механизмов поддержания семантики ассоциаций (речь идет о таких ограничениях целостности, как режим включения и класс членства) в реляционной модели нет. Отношения существуют независимо друг от друга, хотя между кортежами этих отношений возникают порой достаточно сложные ассоциации.

    Неразвитость средств ограничения целостности послужила толчком к последующему развитию модели Кодда, которое получило название расширенной реляционной модели данных. Последняя предполагает поддержку ряда служебных отношений, хранящих сведения об ассоциациях предметной области, а процедуры обработки пользовательских отношений учитывают эти сведения. Расширенная модель Кодда представляет существенно более развитые средства для поддержки ограничений целостности.

    ОПЕРАЦИИ НАД ДАННЫМИ

    К операциям обновления БД относятся запоминание новых кортежей, удаление ненужных, корректировка значении атрибутов существующих кортежей.

    Операция ВКЛЮЧИТЬ требует задания имени отношения и предварительного формирования значений атрибутов нового кортежа. Обязательно должен быть задан ключ кортежа. Включение не будет выполнено, если ключ имеет неуникальное значение.

    Операция УДАЛИТЬ также требует наименования отношения, а также идентификации кортежа и группы кортежей, подлежащих удалению.

    Операция ОБНОВИТЬ выполняется для названного отношения и может корректировать как один, так и несколько кортежей отношения.

    Далее рассмотрим основные операции обработки отношений. Отличительная особенность этих операций заключается в том, что единицей обработки в них являются не кортежи, а отношения. Другими словами, на входе каждой операции используется одно или несколько отношений, а результат выполнения операций - новое отношение.

    Смысл любой обработки реляционной базы данных состоит либо в обновлении существующих отношений, либо в создании новых, поскольку результат всякого запроса к БД есть не что иное, как построение нового отношения, удовлетворяющего условиям выборки.

    Операция ОБЪЕДИНЕНИЕ (С1 = А U В) предполагает, что на входе задано два односхемных отношения А и В. Результат объединения есть построенное по той же схеме отношение С, содержащее все кортежи А и все кортежи отношения В. Операция ПЕРЕСЕЧЕНИЕ (С2=А U В) предполагает на входе два односхемных отношения А и В. На выходе создается отношение по той же схеме, содержащее только те кортежи отношения А, которые есть в отношении В.

    Операция ВЫЧИТАНИЕ (С3=А-В). Все три отношения строятся по одной схеме. В результирующее отношение С3 включаются только те кортежи из А, которых нет в отношении В.

    Операция ДЕКАРТОВО ПРОИЗВЕДЕНИЕ (С4=А X В). Ее важное отличие от предшествующих состоит в том, что отношения А и В могут быть построены по разным схемам, а схема отношения С4 включает все атрибуты отношении А и В.

    Операция ВЫБОРКА (горизонтальное подмножество). На входе операции используется одно отношение. Результат выборки есть новое отношение, построенное по той же схеме, содержащее подмножество кортежей исходного отношения, удовлетворяющих условию выборки.

    Операция ПРОЕКЦИЯ (вертикальное подмножество). На входе операции используется одно отношение. Результирующее отношение включает подмножество атрибутов исходного. Каждому кортежу исходного отношения соответствует такой кортеж в результирующем отношении, что значения одинаковых атрибутов этих двух кортежей совпадают. Но при этом в результирующем отношении кортежи-дубликаты устраняются, в связи с чем мощность результирующего отношения может быть меньше мощности исходного.

    Операция СОЕДИНЕНИЕ. На входе операции используется два отношения; обозначим их А и В. В каждом из отношений выделен атрибут, по которому будет осуществляться соединение; предположим, это атрибуты А1 и Б2). Оба атрибута должны быть определены на одном и том же домене. Схема результирующего отношения включает все атрибуты А и все атрибуты отношения В. Допускается, чтобы в схеме результирующего отношения вместо двух атрибутов, по которым выполняется соединение, был представлен только один.

    Операция СОЕДИНЕНИЕ похожа на декартово произведение. Отличие состоит в том, что декартово произведение предполагает сцепление, каждого кортежа из А с каждым кортежем из В, а в операции соединения кортеж из отношения А сцепляется только с теми кортежами из В, для которых выполнено условие: В1=А1.

    Операция ДЕЛЕНИЕ. На входе операции используется два отношения А и В. Пусть отношение А, называемое делимым, содержит атрибуты (А1,А2, ...,Аn). Отношение В – делитель -содержит подмножество атрибутов А; положим, (А1,А2, ...,Аk), где (k

    Аk+1, Аk+2 , ..., Аn.

    Кортеж включается в результирующее отношение только, если его декартово произведение с отношением В содержится в делимом-отношении А.

    Операции реляционной модели данных предоставляют возможность произвольно манипулировать отношениями, позволяя обновлять БД, а также выбирать подмножества хранимых данных и представлять их в нужном виде.

    Рассмотренные нами операции реляционной алгебры или алгебры отношений, позволяют пошагово описать процесс получения результирующего отношения.

    Отметим особенности реляционной модели данных:

    Множество объектов реляционной модели данных однородно - структура данных определяется только в терминах отношений;

    Основная единица обработки в операциях реляционной модели данных не запись (как в сетевых и иерархических моделях данных), а множество записей - отношение.

    НОРМАЛИЗАЦИЯ ОТНОШЕНИЙ

    Одна из важнейших проблем проектирования схемы БД заключается в выделении типов записей (отношений), определении состава их атрибутов. Группировка атрибутов должна быть рациональной, т. е. минимизирующей дублирование данных и упрощающей процедуры их обработки и обновления.

    Сначала эти вопросы решались интуитивно. Однако интуиция может подвести даже опытного специалиста, поэтому Коддом был разработан в рамках реляционной модели данных аппарат, называемый нормализацией отношений. И хотя идеи нормализации сформулированы в терминологии реляционной модели данных, они в равной степени применимы и для других моделей данных.

    Коддом выделено три нормальных формы отношений. Самая совершенная из них - третья. Предложен механизм, позволяющий любое отношение преобразовать к третьей нормальной форме. В процессе таких преобразований могут выделяться новые отношения.

    Вначале введем понятие простого и сложного атрибута. Простым назовем атрибут, если значения его атомарны, т. е. неделимы. В противовес ему сложный атрибут может иметь значение, представляющее собой конкатенацию нескольких значений одного или разных доменов. Аналогами сложного атрибута может быть вектор, агрегат данных, повторяющийся агрегат.

    Первая нормальная форма. Отношение называется нормализованным или приведенным к первой нормальной форме (1НФ), если все его атрибуты простые.

    Ненормализованное отношение легко сделать нормализованным. Такое преобразование может привести к увеличению мощности отношения и изменению ключа.

    Функциональная зависимость. Пусть Х и Y - два атрибута некоторого отношения, Говорят, что Y функционально зависит от X, если в любой момент времени каждому значению Х соответствует не более чем одно значение атрибута Y. Функциональную зависимость можно обозначить так: Х>Y.

    Полная функциональная зависимость. Говорят, что неключевой атрибут функционально полно зависит от составного ключа, если он функционально зависит от ключа, но не находится в функциональной зависимости ни от какой части составного ключа.

    Вторая нормальная форма. Отношение находится во второй нормальной форме, если оно находится в первой нормальной форме и каждый неключевой атрибут функционально полно зависит от составного ключа.

    Чтобы отношение привести ко второй нормальной форме, необходимо:

    а) построить его проекцию, исключив атрибуты, которые не находятся в полной функциональной зависимости от составного ключа;

    б) построить дополнительно одну или несколько проекций на часть составного ключа и атрибуты, функционально зависящие от этой части ключа.

    Транзитивная зависимость. Пусть X, Y, Z - три атрибута некоторого отношения. При этом Х>Y и Y>Z, но обратное соответствие отсутствует, т. е. Z не> или Y не>Х. Тогда говорят, что Z транзитивно зависит от X.

    Третья нормальная форма. Отношение находится в третьей нормальной форме, если оно находится во второй нормальной форме и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.

    Основное достоинство реляционного подхода - его простота и доступность. Пользователи абстрагированы от физической структуры памяти. Это позволяет эксплуатировать БД без знания методов и способов ее построения. Основные достоинства РМД следующие: простота, независимость данных; гибкость; непроцедурные запросы, теоретическое обоснование на основе теории отношений. Это дает возможность пользователям формировать их запросы более компактно, в терминах более крупных агрегатов.

    Как уже говорилось выше, в реляционной модели данных есть возможность определения одного атрибута или их множества в качестве ключа отношения. Это свойство позволяет формировать запросы к базе данных очень компактно с использованием терминов реляционной алгебры и реляционного счисления, что делает реляционную модель очень простой для разработчика прикладного программного обеспечения.

    С другой стороны, вся информация, которая будет храниться и использоваться в ИИСОД представляется в табличной форме, что является характерной чертой представления информации в реляционных базах данных, а в частности, в их разновидности табличных базах данных.

    ЦЕЛИ И ЗАДАЧИ ПРОЕКТИРОВАНИЯ

    Основная цель процесса проектирования БД состоит: в получении такого проекта, который удовлетворяет следующим требованиям:

    Корректности схемы БД, т. е. база данных должна быть гомоморфным образом моделируемой предметной области, где каждому объекту предметной области соответствуют данные в памяти ЭВМ, а каждому процессу предметной области - адекватные процедуры обработки данных. При этом результаты выполнения процесса и соответствующих ему процедур обработки данных должны совпадать в любой момент функционирования, если это предусмотрено проектом;

    Обеспечение ограничений на конфигурацию вычислительной системы, в первую очередь, на ресурсы внешней и оперативной памяти;

    Эффективность функционирования, т. е. Обеспечение требований ко времени реакции системы на запросы и обновления БД;

    Защита данных от разрушений при сбоях оборудования от некорректных обновлений и, если необходимо, от несанкционированного доступа.

    Простота и удобство эксплуатации информационной системы;

    Гибкость, т. е. возможность развития и последующей адаптации системы к изменениям в предметной области и к новым потребностям пользователей.

    Удовлетворение первых четырех требований обязательно для принятия проекта. Последние два требования необязательны, так как большая или меньшая простота и удобство эксплуатации выступают только факторами оценки альтернативных вариантов проекта.

    СТРУКТУРА ПРОЦЕССА ПРОЕКТИРОВАНИЯ

    Обследование предметной области. На этом этапе, после первоначального знакомства с предметной областью следует детальное изучение всех ее фрагментов, каждый из которых характеризуется локальным пользовательским представлением. Для каждого фрагмента определяются информационные объекты, анализируются процессы, их использующие, и устанавливаются явные ассоциации между информационными объектами.

    Фрагменты предметной области исследуются последовательно. Причем сведения об очередном фрагменте интегрируются с полученными при изучении предшествующих фрагментов.

    Система управления БД – важнейший программный компонент информационной системы, оказывающий существенное влияние на многие параметры системы, в том числе:

    Пользовательские интерфейсы;

    Эффективность функционирования;

    Стоимость разработки приложений;

    Стоимость эксплуатации;

    Гибкость системы.

    Выявление внешних ограничений. Под внешними ограничениями здесь понимаются ограничения среды реализации информационной системы. Каждая среда реализации отлична от идеальной. Она содержит множество ограничений, среди которых наиболее важные для нас: технические, программные и организационные.

    Технические ограничения определяются конфигурацией вычислительной системы, параметрами функционирования её компонентов, надёжностью их работы и др.

    Программные ограничения в первую очередь подразумевают операционную систему и языки прикладного программирования.

    К организационным ограничениям можно отнести требования к срокам разработки, имеющиеся трудовые ресурсы. Возможности по подготовке специалистов и т.п

    Выделение СУБД-претендентов. Проектировщику информационной системы в настоящее время предоставляется достаточно большой выбор СУБД, разработанных для разных конфигураций и типов ЭВМ.

    Анализ основных параметров этих систем позволяет сразу же отвергнуть ряд СУБД, заведомо непригодных к использованию в разрабатываемой информационной системе, оставив для последующего рассмотрения несколько (не более двух-трех) систем претендентов.

    На выбор СУБД-претендентов наибольшее влияние оказывает согласование ряда параметров среды реализации и СУБД. К таким параметрам в первую очередь относятся:

    Тип ЭВМ;

    Операционная система;

    Объемы оперативной памяти;

    Конфигурация вычислительной системы и наличие реализаций СУБД для нескольких типов ЭВМ.

    Моделирование базы данных. Для каждой из выделенных СУБД моделируется база данных. Кроме определения структуры данных и стратегии их хранения в памяти машины, проектировщик оценивает также затраты на разработку программного окружения базы данных и в целом на реализацию и эксплуатацию информационной системы.

    По существу речь идет о преобразовании инфологической схемы предметной области в схему базы данных, поддерживаемую СУБД.

    Для моделирования необходимо знать выбранные СУБД. Если в результате моделирования обнаружилось, что ни одна из выделенных СУБД не позволила получить приемлемый вариант, то сокращается набор требований, предъявляемых к информационной системе, либо используется самостоятельно разработанная система управления БД, ориентированная на конкретное применение. Если же получено несколько приемлемых моделей БД, то они подлежат сравнительному анализу на следующем шаге проектирования.

    Сравнительный анализ модели БД. Перед тем как приступить к сравнительному анализу моделей БД (а, следовательно, и к окончательному выбору СУБД), необходимо выделить набор факторов, по которым будут оцениваться рассматриваемые варианты.

    Не претендуя на полноту, приведем перечень наиболее часто используемых факторов оценки моделей базы данных:

    Требуемые объемы основной и дисковой памяти;

    Трудоемкость разработки программных средств окружения СУБД;

    Трудоемкость реализации приложений;

    Затраты на обучение персонала;

    Стоимость эксплуатации, информационной системы;

    Возможность совмещения разработки БД с ранее выполненными программными реализациями;

    Прогнозируемые сроки реализации информационной системы.

    Для каждого фактора рекомендуется определить количественную оценку. Например, для фактора «возможность совмещения разработки с ранее выполненными программными реализациями» в роли количественной оценки могут выступить трудозатраты на создание соответствующих программных интерфейсов или стоимость повторных программных реализаций.

    Проектирование реализации. Последний, третий этап проектирования состоит из двух шагов: конструирования схемы базы данных, а также разработка программного обеспечения и технологии ведения информационной системы.

    Конструирование схемы БД. На этом шаге проектирования окончательно уточняются все параметры логической и физической организации БД.

    Разработка технологии ведения ИС. Разрабатывается набор технологических инструкций для службы администратора БД. Эти инструкции охватывают все

    процессы, выполняемые на стадиях реализации и эксплуатации информационной системы. В первую очередь это:

    Ввод информации в систему;

    Защита данных;

    Управление использованием данных;

    Управление эффективностью системы.

    Программное обеспечение технологии ведения ИС составляют сервисные средства, необходимые для выполнения большинства процессов, включенных в технологию. Это могут быть стандартные программные продукты (из состава СУБД или независимо поставляемые) либо оригинальные программные разработки. Определяя программное обеспечение, оговаривается его состав, а для оригинальных программ разрабатываются их алгоритмы.

    ТЕХНОЛОГИЯ ВЕДЕНИЯ ИНФОРМАЦИОННОЙ СИСТЕМЫ

    Ввод информации, в систему. Информация, хранимая и используемая в системе, включает в себя нормативно-справочные сведения большинства приложений, а также сведения, поступающие в систему при выполнении приложений, в том числе и в реальном масштабе времени. Последний, вид информации характеризуется более коротким сроком существования, чем нормативно справочная информация. В информационной системе для учебного заведения (как и в нашем случае) к нормативно-справочным относятся сведения о преподавателях, учебных планах, студентах а ко второй разновидности - сведения о расписании, посещаемости занятий, об аттестации студентов. Очевидно, если состав преподавателей, списки студентов и учебные планы в течение года не меняются, то информация второй разновидности корректируется ежедневно. Её загрузка и корректировка осуществляются конечными пользователями при выполнении функциональных приложений.

    Защита данных. Технология ведения информационной системы должна предусматривать набор мер по обеспечению различных аспектов защиты данных. Для защиты данных от сбоев оборудования и физического разрушения снимаются копии данных и ведется журнальный файл. Инструкции по выполнению программы восстановления текущего состояния БД разрабатываются для обеспечения защиты данных от программных сбоев и некорректных изменений.

    При использовании СУБД, не имеющих механизма процедур, в набор программных средств разработчик может включить оригинально разработанную программу проверки полноты

    корректности базы данных. Такая программа будет выполняться в промежутке между сеансами обработки данных.

    Полнота и корректность означают наличие в базе данных всех записей, без которых не могут нормально функционировать приложения. Кроме того, подразумевается корректность установленных ассоциаций, а также содержимого полей, введенных для поддержки разнообразных зависимостей между данными. В алгоритм этой программы закладываются такие виды контроля, которые эффективно выполняются автоматически. Тем самым облегчается обслуживание базы данных, упрощаются алгоритмы многих приложений за счет исключения из них процедур проверки корректности обрабатываемых данных.

    Для программы проверки полноты и корректности БД должны быть разработаны технологические инструкции по ее выполнению, оговорены правила исправления выявленных ошибок.

    Защита данных в БД от несанкционированного доступа выполняется обычными средствами СУБД, а также средствами корректировки «замков управления» доступом и замены программ кодирования-декодирования. Соответствующие рекомендации для администратора БД следует разработать на стадии эксплуатации системы.

    Управление использованием данных. Технология ведения информационной системы должна предусматривать механизм учета пользователей и приложений. Для этой цели могут использоваться словари-справочники данных. Кроме того- сведения об использовании данных и обращениях конечных пользователей к ИС должны фиксироваться в журнальном файле. Сервисные программы обработки журнального файла позволят администратору БД получить разнообразные протоколы использования данных.

    На стадии эксплуатации администратор БД должен разработать график взаимодействия пользователей с системой, позволяющий обеспечить нормальное функционирование ИС и по возможности не допустить конфликтных ситуаций.

    Управление эффективностью функционирование системы. Периодически при эксплуатации системы администратор БД оценивает параметры эффективности её функционирования. Для этой цели используются стандартные или оригинально разработанные сервисные программы, позволяющие получить сведения о затратах и наличии ресурсов внешней

    памяти, реактивности системы, сведения о частоте использования данных и др. На основании этих сведений администратор БД принимает решения об изменениях параметров схем или о проведении реорганизаций.

    ЗАКЛЮЧЕНИЕ

    Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране. Некорректное и нестрогое использование термина «таблица» вместо термина «отношение» нередко приводит к недопониманию. Наиболее частая ошибка состоит в рассуждениях о том, что РМД имеет дело с «плоскими», или «двумерными» таблицами, тогда как таковыми могут быть только визуальные представления таблиц. Отношения же являются абстракциями, и не могут быть ни «плоскими», ни «неплоскими».

    Для лучшего понимания РМД следует отметить три важных обстоятельства:

    модель является логической, то есть отношения являются логическими (абстрактными), а не физическими (хранимыми) структурами;

    для реляционных баз данных верен информационный принцип: всё информационное наполнение базы данных представлено одним и только одним способом, а именно - явным заданием значений атрибутов в кортежах отношений; в частности, нет никаких указателей (адресов), связывающих одно значение с другим;

    наличие реляционной алгебры позволяет реализовать декларативное программирование и декларативное описание ограничений целостности, в дополнение к навигационному (процедурному) программированию и процедурной проверке условий.

    ЛИТЕРАТУРА

    1) http://www.fio.ru/- web-сайт Федерации Интернет образования.

    2) http://www.citforum.ru/database/foxpro.shtml - материалы по БД

    3) http://db.informika.ru/ - электронный справочник

    4) http://www.inftech.webservis.ru/ - web-сайт Информационных технологий.

    5) www.e-russia.ru - web-сайт, посвящённый содержанию, проблемам и обоснованию необходимости решения ФЦП «Электронная Россия» программными методами.

    6) http://ccc.ru/elro/about.html - материалы об Электронной России: дискуссионный центр.

    7) http://www.e-rus.org/articles/meaning_programm.shtml -Официальный текст программы «Электронная Россия»

    8) www.hse.ru/~erussia - web-сайт ФЦП «Электронная Россия».

    Аннотация: В данной лекции вводятся основные понятия реляционной модели данных. Эти понятия используются при решении задачи проектирования реляционной базы данных - создании логической модели реляционной базы данных.

    Информация, данные, информационные системы

    Понятие отношения

    Реляционная модель данных была предложена Е.Ф. Коддом в 1970 году и получила к настоящему времени широкое распространение и популярность. Этому способствовали два ее существенных достоинства: 1) однородность представления данных в модели, которая обусловливает простоту восприятия ее конструкций пользователями базы данных , и 2) наличие развитой математической , которая обусловливает корректность ее применения.

    В основе реляционной модели данных лежит понятие отношения, которое задается списком своих элементов и перечислением их значений. Рассмотрим пример на рис. 4.1 . На нем представлено расписание движения автобусов по маршруту "Москва - Черноголовка - Москва". Налицо определенная структура. Каждый включенный в расписание рейс имеет свой номер, время отправления и время в пути. Расписание может быть представлено таблицей. Заголовки колонок таблицы носят название атрибутов . Список их имен носит названия схемы отношения . Каждый атрибут определяет тип представляемых им данных, который вместе с областью его значений называется доменом. Вся таблица целиком называется отношением, а каждая строка таблицы носит название кортежа отношения . Таким образом, отношение можно представить в виде двумерной таблицы.


    Рис. 4.1. Расписание движения автобусов по маршруту "Москва - Черноголовка - Москва" как отношение

    Подходы к определению понятия отношения могут быть различными. Математически отношение может быть определено как множество кортежей, являющейся подмножеством декартова произведения фиксированного числа областей (доменов). В результате получаем, что в каждом кортеже должно быть одинаковое число компонент (атрибутов) и значение каждого из них выбирается из некоторого определенного домена.

    Введем ряд математических определений, связанных с понятием отношения.

    Определение 1. Декартово произведение Пусть D 1 , D 2 , ..., D n - произвольные конечные множества, не обязательно различные. Декартовым произведением этих множеств называется множество вида Пример:

    Определение 2. Схема отношения

    Пусть - имена атрибутов. Схемой r отношения R называется конечное множество имен атрибутов

    Определение 3. Отношение

    Отношением со схемой r на конeчных множествах D 1 , D 2 ,…, D n называется подмножество R декартового произведения

    Элементы отношения (d 1 , d 2 , ..., d n) , как уже упоминалось выше, называются кортежами. О каждом отношении, являющимся подмножеством декартового произведения можно сказать, что оно имеет арность n . Кортеж (d 1 , d 2 , ..., d n) имеет n компонентов. Для обозначения кортежа применяется и сокращенная форма записи d 1 , d 2 , ..., d n . Использование понятия декартового произведения для определения отношения в реляционной модели данных делает модель конструктивной. На математическом языке это означает, что все остальные понятия модели определяются в рамках строго математического построения на базе декартового произведения.

    Табличная форма представления отношения была введена в целях популяризации модели среди неподготовленных пользователей баз данных. Трактовка реляционной теории на уровне таблиц скрывает ряд определений, важных для понимания как теории реляционных баз данных , так и языка манипулирования данными, моментов.

    Во-первых, атрибуты разных отношений могут быть определены на одном домене, так же как и атрибуты одного отношения. Это очень важное обстоятельство, позволяющее устанавливать связи по значению между отношениями. Во-вторых, множество математически по своему определению не может иметь совпадающих элементов, и, следовательно, кортежи в отношении можно различить лишь по значению их компонент. Это тоже очень важное для модели обстоятельство: никакие два кортежа не могут иметь полностью совпадающих компонент. Таким образом, в реляционной модели полностью исключается дублирование данных о сущностях реального мира! В-третьих, заметим, что схема отношения также есть множество, что позволяет работать с ними с помощью теоретико-множественных операций . Это является важным моментом для построения теории проектирования реляционных схем баз данных.

    Существует определенное различие между математическим определением отношения и действительным хранением отношений в памяти компьютера. По определению, отношение не может иметь два идентичных кортежа. Однако СУБД, поддерживающие реляционную модель данных , хранят отношения в файлах операционной системы компьютера. Размещение отношений в файлах операционной системы допускает хранение идентичных кортежей. Если не используется специальная техника (контроль целостности по первичному ключу ), то обычно большинство промышленных СУБД допускают хранение двух идентичных кортежей в базе данных.

    С математической точки зрения однородность реляционной модели, о которой упоминалось выше, состоит в том, что схема отношения является постоянной, иначе говоря, каждая строка таблицы имеет один и тот же формат. С другой стороны, предполагается, что каждая строка таблицы представляет некую сущность реального мира или связь между ними. Обладают ли сущности реального мира такой однородной структурой , является вопросом, на который должен ответить аналитик или эксперт-пользователь. Решение о пригодности использования реляционной модели для моделирования данных конкретной предметной области решается руководителем ИТ-проекта и аналитиками.

    Министерство образования Российской Федерации Министерство образования Республики Таджикистан

    Российско-Таджикский (славянский) Университет

    Кафедра «И и ИС»

    Курсовая работа

    по дисциплине: Базы данных

    на тему: Реляционная модель данных

    Душанбе – 2008


    План

    Введение

    1 Модель данных

    2 Базовые понятия реляционной модели данных

    3 Общие представления о модели данных

    Заключение

    Список используемой литературы


    Введение

    Человечество стремительно вступает в принципиально новую для него информационную эпоху. Существенным образом меняются все слагаемые образа жизни людей. В современном обществе уровень информатизации характеризует уровень развития государства. Начавшийся ХХI век специалисты называют веком компьютерных технологий. Их революционное воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей. Многие развитые и развивающиеся страны в полной мере осознали те колоссальные преимущества, которые несет с собой развитие и распространение информационно-коммуникационных технологий. Не у кого не вызывает сомнения тот факт, что движение к информационному обществу - это путь в будущее человеческой цивилизации.

    В соответствии с реляционной моделью база данных представляется в виде совокупности таблиц, над которыми могут выполняться операции, формулируемые в терминах реляционной алгебры и реляционного исчисления. В реляционной модели операции над объектами базы данных имеют теоретико-множественный характер. Концепции реляционной модели данных связаны с именем известного специалиста в области систем баз данных Е. Кодда. Именно поэтому реляционную модель данных часто называют моделью Кодда.

    Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.


    1 Модель данных

    Модель данных – совокупность структур данных и операций их обработки.

    Модели данных определяются:

    a) способами организации данных.

    b) ограничением ценности данных.

    c) операциями с данными.

    СУБД основывается на использовании иерархической, сетевой или реляционной модели, на комбинации этих моделей или на некотором их подмножестве.

    Рассмотрим 3 основных типа моделей данных: иерархическую, сетевую и реляционную.

    Иерархическая модель данных

    а) Иерархическая структура представляет совокупность элементов, связанных между собой по определённым правилам. Объекты, связанные иерархическими отношениями, образуют ориентированный граф (перевёрнутое дерево), вид которого представлен на рисунке 1.

    А Уровень 1

    В1 В2 В3 В4 В5 Уровень 2

    С1 С2 С3 С4 С5 С6 С7 С8 Уровень 3

    Рис. 1

    К основным понятиям иерархической структуры относятся: уровень, элемент (узел), связь.

    Узел – это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. Каждый узел на более низком уровне связан только с одним узлом, находящимся на более высоком уровне. Иерархическое дерево имеет только одну вершину (корень дерева), не подчинённую никакой другой вершине и находящуюся на самом верхнем (первом) уровне. Зависимые (подчинённые) узлы находятся на втором, третьем и т.д. уровнях. Количество деревьев в базах данных определяется числом корневых записей. К каждойдятся на втором, третьемершине и находящуюся на самом верхнем 9первом) уровне. ровне. Записи базы данных существует только 1 иерархический путь от корневой записи. Например, как видно на рисунке 1 для записи С4 путь проходит через записи А и В3.

    Пример, представленный на рисунке 2 иллюстрирует использование иерархической модели базы данных. Для рассматриваемого примера иерархическая структура правомерна, т.к. каждый студент учится в определённой (только одной) группе, которая относится к определённому (только одному) институту.

    b) Ограничение целостности - целостность ссылок между предком и потомком с учетом основного правила: никакой потомок не может существовать без предка.

    Примеры: 1) ОКА 3)TOTAL

    2)ИНЭС 4) IMS

    с) Операции над данными:

    Найти указанное дерево.

    Перейти от одного дерева к другому.

    Перейти от одной записи к другой.

    Перейти от одной записи к другой в порядке обхода иерархии.

    Удаление текущей записи.


    Институт (специальность, название, ректор)


    Рис. 3 Сетевая структура базы данных в виде графа

    Студент (номер зачётной книжки , фамилия, группа)



    Работа (шифр ,

    руководитель,

    Рис. 4.

    Примером сложной сетевой структуры может служить структура базы данных, содержащей сведения о студентах, участвующих в научно – исследовательских работах (НИР). Возможно участие одного студента в нескольких НИР, а также участие нескольких студентов в разработке одной НИР. Графическое изображение описанной в примере сетевой структуры, состоящей только из двух типов записей, показано на рисунке 4. Единственное отношение представляет собой сложную связь между записями в обоих направлениях.

    с) Операции над данными сетевой модели данных:

    Найти конкретную запись в наборе однотипных записей.

    Перейти от узла высшего уровня к первому узлу низшего по некоторой связи.

    Перейти к следующему узлу по некоторой связи.

    Создать новую запись.

    Уничтожить запись.

    Модифицировать запись.

    Включить 1 связь.

    Исключить из связи.

    Переставить в другую связь.

    Особенность сетевой модели данных: возможность осуществления навигации по связям данных, т.е. переход от просмотра реквизитов экземпляра одного типа записи к просмотру реквизитов экземпляра, связанного типом записи. Пользователю предоставляется возможность многокритериального анализа базы данных без непосредственной формализации своих информационных потребностей через формирование запросов на языке, встроенном в СУБД.

    Другая сильная сторона сетевой модели данных – использование множественных типов данных для описания атрибутов информации объектов. Это позволяет создавать информационные структуры, которые представляют собой табличную форму данных.Не смотря на развитие сетевой модели данных, не получилось создать языковых программных средств на их основе, которые позволили бы в прикладных информационных системах одинаково описывать данные сетевой организации.

    Реляционная модель данных.

    Понятие реляционной (англ. relation – отношение) связано с разработками известного американского специалиста в области систем баз данных Е. Кодда.

    2 Базовые понятия реляционной модели данных

    Реляционная модель данных представляет информацию в виде совокупности связанных таблиц, которые называются отношениями или реляциями.

    Тип данных – эквивалентно понятию типа данных в алгоритмических языках. Существуют:

    Целочисленные типы;

    Вещественные типы;

    Строковые типы;

    Типы данных для денежных величин;

    Типы данных для временных величин;

    Типы двоичных объектов (не имеет аналогов в языках программирования, и обозначаются Blob)

    Наименьшая единица данных реляционной модели - это отдельное атомарное (неразложимое) для данной модели значение данных. Доменом называется множество атомарных значений одного и того же типа. Иными словами, домен представляет собой допустимое потенциальное множество значений данного типа.Понятие домена более специфично для баз данных, хотя и имеет некоторые аналогии с диапазонными типами и множествами, имеющимися в ряде языков программирования. В самом общем виде домен определяется заданием некоторого базового типа данных, к которому относятся элементы домена, и произвольного логического выражения, применяемого к элементу типа данных. Если вычисление этого логического выражения дает результат «истина», то элемент данных является элементом домена.

    Следует отметить также семантическую нагрузку понятия домена: данные счита ются сравнимыми только в том случае, когда они относятся к одному домену. Если же значения двух атрибутов берутся из различных доменов, то их сравнение, вероятно, лишено смысла. Понятие домена используется далеко не во всех СУБД. В качестве примера реляци онных баз данных, использующих домены, можно привести Огасle и InterBase.

    Атрибуты, схема отношения, схема базы данных

    Столбцы отношения называют атрибутами, им присваиваются имена, по которым к ним затем производится обращение.

    Список имен атрибутов отношения с указанием имен доменов (или типов, если домены не поддерживаются) называется схемой отношения.

    Степень отношения - это число его атрибутов. Отношение степени один называют унарным, степени два - бинарным, степени три - тернарным,..., а степени п - n-арным.

    Схемой базы данных называется множество именованных схем отношений.

    Кортеж

    Кортеж, соответствующий данной схеме отношения, представляет собой множество пар {имя атрибута, значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. «Значение» является допустимым значением домена данного атрибута (или типа данных, если понятие домена не поддерживается). Тем самым степень кортежа, то есть число элементов в нем, совпадает со степенью соответствующей схемы отношения. Иными словами, кортеж - это набор именованных значений заданного типа. Схему отношения иногда называют также заголовком отношения, а отношение как набор кортежей - телом отношения. Понятие схемы отношения напоминает понятие структурного типа данных в языках про граммирования (структура в С/С++, запись в Pascal). Однако в реляционных базах данных имя схемы отношения всегда совпадает с именем соответствующего отношения-экземпляра. В классических реляционных базах данных после определения схемы базы Данных изменяются только отношения-экземпляры. В них могут появляться новые и удаляться или модифицироваться существующие кортежи. Однако во многих реализациях допускается и изменение схемы базы данных: определение новых и изменение существующих схем отношения. Это принято называть эволюцией схемы базы данных.

    Ключи отношения

    Поскольку отношение с математической точки зрения является множеством, а множества по определению не содержат совпадающих элементов, то никакие два кортежа отношения не могут быть дубликатами друг друга в любой произвольно заданный момент времени. Таким образом, в отношении всегда должен присутствовать некоторый атрибут (или набор атрибутов), однозначно определяющий каждый кортеж отношения и обеспечивающий уникальность строк таблицы. Такой атрибут (или набор атрибутов) называется первичным ключом отношения.

    Для каждого отношения свойством уникальности обладает, по крайней мере, полный набор его атрибутов. Однако требуется обеспечить и условие минимальности. Поэтому, как правило, в отношении всегда имеется один атрибут, обладающий свойством уникальности и являющийся первичным ключом.

    В зависимости от количества атрибутов, входящих в ключ, различают простые и сложные (или составные) ключи.

    Простой ключ - ключ, содержащий только один атрибут. В общем случае операции объединения выполняются быстрее в том случае, когда в качестве ключаис пользуется самый короткий и самый простой из возможных типов данных. С этой точки зрения наилучшим образом подходит целочисленный тип, который имеет аппаратную поддержку для выполнения над ним логических операций.

    Сложный или составной ключ - ключ, состоящий из нескольких атрибутов. Набор атрибутов, обладающий свойством уникальности, но не обладающий минимальностью, называется суперключом. Суперключ - сложный (составной) ключ с большим числом столбцов, чем необходимо для того, чтобы быть уникальным идентификатором. Такие ключи нередко используются на практике, так как избыточность может оказаться полезной пользователю.

    В зависимости от того, содержит ли атрибут, являющийся первичным ключом, какую-либо информацию, различают искусственные и естественные ключи.

    Искусственный или суррогатный ключ - ключ, созданный самой СУБД или пользователем с помощью некоторой процедуры, который сам по себе не содержит ин формации. Искусственный ключ используется для создания уникальных идентификаторов строк, когда сущность должна быть описана полностью, чтобы однозначно идентифицировать конкретный элемент. Искусственный ключ часто используют вместо значимого сложного ключа, который является слишком громоздким, чтобы использоваться в реальной базе данных. Система поддерживает искусственный ключ, но он никогда не показывается пользователю.

    Естественный ключ - ключ, в который включены значимые атрибуты и который, таким образом, содержит информацию.

    Каждый из типов первичных ключей имеет свои преимущества и недостатки; их обсуждению посвящено большое количество публикаций. Мы не будем проводить подробное их сравнение, а отметим лишь основные плюсы и минусы каждого из видов ключей.

    Основными достоинствами естественных ключей является то, что они несут вполне определенную информацию и их использование не приводит к необходимости добавлять в таблицы атрибуты, значения которых не имеют никакого смысла и используются лишь для связи между отношениями. Иными словами, использование естественных ключей позволяет получить более компактную форму таблиц (в которых не будет избыточных, неинформативных данных) и более естественные связи между ними.

    Основным же недостатком естественных ключей является то, что их использование весьма затруднительно в случае изменчивости предметной области. Следует пони мать, что значения атрибутов первичного ключа не должны изменяться. То есть однажды заданное значение первичного ключа для кортежа не может быть позже изменено. Такое требование ставится в основном для поддержания целостности базы данных. Связь между отношениями обычно устанавливается именно по пер вичномуключу, и его изменение приведет к нарушению этих связей или к необходимости изменения записей в нескольких таблицах. Даже в сравнительно простых базах данных это может вызвать ряд трудноразрешимых проблем. В некоторых реляционных СУБД допускается изменение первичного ключа. Иногда это бывает действительно полезно. Однако прибегать к этому следует лишь в случае крайней необходимости.

    Типичным примером изменчивой предметной области, в которой для сущности невозможно определить неизменный естественный ключ, является любая область, где в качестве сущности выступает человек. Действительно, невозможно определить для человека набор атрибутов, которые были бы уникальны и неизменны на протяжении всей его жизни.

    Второй, довольно существенный недостаток естественных ключей состоит в том, что, как правило, уникальные естественные ключи являются составными и содержат строковые атрибуты. Как уже отмечалось выше, максимальная скорость выполнения операций над данными обеспечивается при использовании простых целочисленных ключей. Таким образом, с точки зрения быстродействия системы естественные ключи часто оказываются неоптимальными.

    Оба недостатка естественных ключей можно преодолеть, определив в отношениях суррогатные ключи, представляющие собой некоторый универсальный атрибут, как правило, целочисленного типа, который не зависит ни от предметной области, ни, тем более, от структуры отношения, которое он идентифицирует. Таким образом, можно обеспечить уникальность и неизменность ключа (раз он никаким образом не зависит от предметной области, то никогда не возникнет необходимость изменять его). Однако за это приходится платить избыточностью данных в таблицах. Следует заметить, что во многих практических реализациях реляционных СУБД до пускается нарушение свойства уникальности кортежей для промежуточных отношений, порождаемых неявно при выполнении запросов. Такие отношения являются не множествами, а мультимножествами, что в ряде случаев позволяет добиться определенных преимуществ, но иногда приводит к серьезным проблемам.

    В любой из таблиц может оказаться несколько наборов атрибутов, которые можно выбрать в качестве ключа. Такие наборы называются потенциальными или альтернативными ключами.

    Нередко в отношениях определяются так называемые вторичные ключи. Вторичный ключ представляет собой комбинацию атрибутов, отличную от комбинации, составляющей первичный ключ. Причем вторичные ключи не обязательно обладают свойством уникальности. При их определении могут задаваться следующие ограничения:

    UNIQUE - ограничение уникальности, значения вторичных ключей при дан ном ограничении не могут дублироваться;

    NOTNULL - при данном ограничении ни один из атрибутов, входящих в со став вторичного ключа, не может принимать значение NULL.

    Перекрывающиеся ключи - сложные ключи, которые имеют один или несколько общих столбцов.

    Связанные отношения

    В реляционной модели данные представляются в виде совокупности взаимосвязанных таблиц. Подобное взаимоотношение между таблицами называется связью (rilationship). Таким образом, еще одним важным понятием реляционной модели является связь между отношениями.

    При рассмотрении связанных таблиц важное значение имеет понятие внешнего ключа. Рассмотрим его более подробно.

    Внешние ключи отношения

    В базах данных одни и те же имена атрибутов часто используются в разных отношениях. Внешний ключ - это атрибут (или множество атрибутов) одного отношения, являющийся ключом другого (или того же самого) отношения.

    Внешние ключи используются для установления логических связей между отношениями. Связь между двумя таблицами устанавливается путем присваивания значений внешнего ключа одной таблицы значениям ключа другой.

    Так же как и любые другие ключи, внешние ключи могут быть простыми либо составными.

    Часто связь между отношениями устанавливается по первичному ключу, то есть значениям внешнего ключа одного отношения присваиваются значения первичного ключа другого отношения. Однако это не является обязательным - в общем случае связь может устанавливаться также и с помощью вторичных ключей. Кроме того, при установлении связей между таблицами необязательно требование уникальности ключа, по которому устанавливается связь. Атрибуты внешнего ключа не обязательно должны иметь те же имена, что и атрибуты ключа, которым они соответствуют. Внешний ключ может ссылаться и на ту же таблицу, к которой он принадлежит. В этом случае внешний ключ называется рекурсивным.

    Условия целостности данных

    Чтобы информация, хранящаяся в базе данных, была однозначной и непротиворе чивой, в реляционной модели устанавливаются некоторые ограничительные усло вия. Ограничительные условия - это правила, определяющие возможные значе ния данных. Они обеспечивают логическую основу для поддержания корректных значений данных в базе. Ограничения целостности позволяют свести к минимуму ошибки, возникающие при обновлении и обработке данных.

    · Важнейшими ограничениями целостности данных являются: категорийная целостность;ссылочная целостность.

    Ограничение категорийной целостности заключается в следующем. Кортежи отношения представляют в базе данных элементы определенных объектов реального мира или, в соответствии с терминологией реляционных СУБД, категорий. Первичный ключ таблицы однозначно определяет каждый кортеж и, следовательно, каждый элемент категории. Таким образом, для извлечения данных, содержащихся в строке таблицы, или для манипулирования этими данными необходимо знать значение ключа для этой строки. Поэтому строка не может быть занесена в базу данных до тех пор, пока не будут определены все атрибуты ее первичного ключа. Это правило называется правилом категорийной целостности и кратко формулируется следующим образом: никакой атрибут первичного ключа строки не может быть пустым.

    Второе условие накладывает на внешние ключи ограничения для обеспечения целостности данных, называемой ссылочной целостностью.

    Если две таблицы связаны между собой, то внешний ключ таблицы должен содержать только те значения, которые уже имеются среди значений ключа, по которому осуществляется связь. Если корректность значений внешних ключей не контролируется СУБД, то может нарушиться ссылочная целостность данных.Ограничения категорийной и ссылочной целостности должны поддерживаться СУБД. Для соблюдения целостности сущности достаточно гарантировать отсут ствие в любом отношении кортежей с одним и тем же значением первичного ключа. Что же касается ссылочной целостности, то здесь обеспечение целостности выглядит несколько сложнее. При обновлении ссылающегося отношения (при вставке новых кортежей или модификации значения внешнего ключа в существующих кортежах) достаточно следить за тем, чтобы не появлялись некорректные значения внешнего ключа. А вот при удалении кортежа из отношения, на которое ведет ссылка, возможно использовать один из трех подходов, каждый из которых поддерживает целостность по ссылкам:

    · первый подход заключается в том, что запрещается производить удаление кортежа, на который существуют ссылки (то есть сначала нужно либо удалитьссы лающиеся кортежи, либо соответствующим образом изменить значения их внешнего ключа);

    · при втором подходе при удалении кортежа, на который имеются ссылки, во всех ссылающихся кортежах значение внешнего ключа автоматически становится неопределенным;

    · третий подход (называемый также каскадным удалением) состоит в том, что при удалении кортежа из отношения, на которое ведет ссылка, из ссылающегося отношения автоматически удаляются все ссылающиеся кортежи.

    В развитых реляционных СУБД обычно можно выбрать способ поддержания ссылочной целостности для каждой отдельной ситуации определения внешнего ключа. Конечно, для принятия такого решения необходимо анализировать требования конкретной прикладной области. Хотя большинство современных СУБД обеспечивает ссылочную целостность данных, все же следует помнить, что существуют реляционные СУБД, в которых не выполняются ограничения ссылочной целостности.

    Типы связей между таблицами

    При установлении связи между двумя таблицами одна из них будет являться глав ной (master), а вторая - подчиненной (detail). Различие между ними несколько упрощенно можно пояснить следующим образом. В главной таблице всегда доступны все содержащиеся в ней записи. В подчиненной же таблице доступны только те записи, у которых значение атрибутов внешнего ключа совпадает со значением соответствующих атрибутов текущей записи главной таблицы. Причем изменение текущей записи главной таблицы приведет к изменению множества доступных записей подчиненной таблицы, а изменение текущей записи в подчиненной таблице не вы зовет никаких изменений ни в одной из таблиц. На практике часто связывают более двух таблиц. Одна и та же таблица может быть главной по отношению к одной таблице и подчиненной по отношению к другой. Или у одной главной таблицы может находиться в подчинении не одна, а несколько таблиц. Однако подчиненная таблица не может управляться двумя таблицами. Таким образом, у главной таблицы может быть несколько подчиненных, но у подчиненной таблицы может быть только одна главная.

    Различают четыре типа связей между таблицами реляционной базы данных:

    · один к одному - каждой записи одной таблицы соответствует только одна запись другой таблицы;

    · один ко многим - одной записи главной таблицы могут соответствовать несколько записей подчиненной таблицы;

    · многие к одному - нескольким записям главной таблицы может соответствовать одна и та же запись подчиненной таблицы;

    · многие ко многим - одна запись главной таблицы связана с несколькими записями подчиненной таблицы, а одна запись подчиненной таблицы связана с не сколькими записями главной таблицы.

    Различие между типами связей «один ко многим» и «многие к одному» зависит от того, какая из таблиц выбирается в качестве главной, а какая в качестве подчиненной.

    Основные свойства отношений

    Рассмотрим теперь некоторые важнейшие свойства отношений реляционной мо дели данных.

    3 Общие представления о модели данных

    Можно по-разному характеризовать понятие модели данных. С одной стороны, модель данных – это способ структурирования данных, которые рассматриваются как некоторая абстракция в отрыве от предметной области. С другой стороны, модель данных – это инструмент представления концептуальной модели предметной области и динамики ее изменения в виде базы данных.

    Учитывая обе вышеуказанные стороны, определим основные структуры моделей данных, используемые для представления концептуальной модели предметной области (сущностей, атрибутов, связей).

    Элемент данных (поле) – наименьшая поименованная единица данных. Используется для представления значения атрибута.

    Запись – поименованная совокупность полей. Используется для представления совокупности атрибутов сущности (записи о сущности).

    Экземпляр записи – запись с конкретными значениями полей.

    Агрегат данных – поименованная совокупность элементов данных внутри записи, которую можно рассматривать как единое целое.

    Файл – поименованная совокупность экземпляров записей одного типа. Используется для представления однородного набора сущностей.

    Набор файлов – поименованная совокупность файлов, обрабатываемых в системе. Используется для представления нескольких наборов сущностей.

    Введем понятие «группа», обобщающее понятия «агрегат» и «запись».

    Группа – это поименованная совокупность элементов данных или элементов данных и других групп.

    Важнейшим понятием концептуальной модели является понятие связи между сущностями (наборами сущностей). В моделях данных соответствующее понятие отражается понятием «групповое отношение».

    Групповое отношение – поименованное бинарное отношение, заданное на двух множествах экземпляров рассматриваемых групп. По характеру бинарных связей различают групповые отношения вида 1:1, 1:M, M:1, M:N. Пары чисел называют коэффициентами группового отношения. В групповом отношении один член группы назначается владельцем отношения, другой – членом.

    База данных – поименованная совокупность экземпляров групп и групповых отношений.

    Для представления группового отношения используется две формы:

    а) Графовая . Группы изображаются вершинами графа, связи между группами – дугами, направленными от группы-владельца к группе-члену с указанием имени отношения и коэффициента.

    По типу графов различают:

    􀂃 иерархическую модель (граф без циклов – дерево);

    􀂃 сетевую модель (ориентированный граф общего вида).

    б) Табличная . Связь между группами изображается таблицей, столбцы которой представляют ключи соответствующих групп. Для формального описания таблицы используется математическое (теоретико-множественное) понятие отношения. Соответствующая модель данных называется реляционной моделью.

    Модель данных описывается следующим образом:

    􀂃 определяются типы и характеристики логических структур данных

    (полей, записей, файлов);

    􀂃 описываются правила составления структур более общего типа из структур более простых типов;

    􀂃 описываются возможные действия над структурами и правила их

    выполнения, включающие:

    − основные элементарные операции над данными;

    − обобщенные операции (процедуры);

    − средства контроля относительно простых условий корректности ввода данных (ограничения);

    − средства контроля сколь угодно сложных условий корректности выполнения определенных действий (правила). В качестве основных элементарных операций обычно рассматриваются следующие: поиск записи с заданным значением ключа, чтение нужной записи, добавление записи, корректировка, удаление. В моделях данных также предусматриваются специальные операции для установления групповых отношений.

    Обобщенные операции или процедуры – последовательность операций, реализующая определенный алгоритм обработки данных. Процедуры могут инициироваться СУБД автоматически, а также могут запускаться пользователем. Примерами процедур являются процедуры копирования БД, восстановления БД, процедуры, вычисляющие значения определенных атрибутов в БД по значениям других атрибутов, и т.п.

    Средства контроля используются для реализации ограничений целостности концептуальной модели. Простейшие средства контроля ограничения используются для реализации, как внешних ограничений концептуальной модели, так и внутренних ограничений модели данных. В качестве последних ограничений, в частности, реализованы ограничения на ввод данных несоответствующего типа, несоответствующей характеристики (по числу битов, по числу полей, по количеству записей и т.п.). Более сложные средства контроля (правила) позволяют вызывать выполнение определенной последовательности операций (сколь угодно сложной) при изменении или добавлении данных в БД и тем самым реализовывать ограничения целостности, описанные с помощью специальных конструкций.


    Заключение

    Когда в предыдущих разделах мы говорили об основных понятиях реляционных баз данных, мы не опирались на какую-либо конкретную реализацию. Эти рассуждения в равной степени относились к любой системе, при построении которой использовался реляционный подход. Другими словами, мы использовали понятия так называемой реляционной модели данных. Модель данных описывает некоторый набор родовых понятий и признаков, которыми должны обладать все конкретные СУБД и управляемые ими базы данных, если они основываются на этой модели. Наличие модели данных позволяет сравнивать конкретные реализации, используя один общий язык. Хотя понятие модели данных является общим, и можно говорить о иерархической, сетевой, некоторой семантической и т.д. моделях данных, нужно отметить, что это понятие было введено в обиход применительно к реляционным системам и наиболее эффективно используется именно в этом контексте. Попытки прямолинейного применения аналогичных моделей к дореляционным организациям показывают, что реляционная модель слишком "велика" для них, а для постреляционных организаций она оказывается "мала".


    Список используемой литературы

    1. Компьютеры в офисе и дома: Реляционные БД: 2004г. 228 стр.

    2. Мичи Д., Джонатон Р. Реляционные СУБД. 2004г. №8, стр. 4

    3. www.libbooks.ru (2006 по 2008г. Раздел: База данных).

    4. www.bankreferatov.ru (2004 по 2008г. Раздел: База данных).

    5. Джонс Э., Саттон Д. пользователя Office 97./ К.: Диалектика, 1999г.

    6. Петров В.Н. Информационные системы: учебное пособие для студентов высших учебных заведений, 2003г. 2е изд. стр. 139

    Сетевая модель данных

    В СМД элементарные данные и отношения между ними представляются в виде ориентированной сети (вершины - данные, дуги - отношения).

    Сетевые базы данных обладали рядом преимуществ:

    · Гибкость. Множественные отношения предок/потомок позволяли сетевой базе данных хранить данные, структура которых была сложнее простой иерархии.

    · Стандартизация. Появление стандарта CODASYL популярность сетевой модели, а такие поставщики мини-компьютеров, как Digital Equipment Corporation и Data General, реализовали сетевые СУБД.

    · Быстродействие. Вопреки своей большой сложности, сетевые базы данных достигали быстродействия, сравнимого с быстродействием иерархических баз данных. Множества были представлены указателями на физические записи данных, и в некоторых системах администратор мог задать кластеризацию данных на основе множества отношений.

    Конечно, у сетевых баз данных были недостатки. Как и иерархические базы данных, сетевые базы данных были очень жесткими. Наборы отношений и структуру записей приходилось задавать наперёд. Изменение структуры базы данных обычно означало перестройку всей базы данных.

    Как иерархическая, так и сетевая база данных были инструментами программистов. Реализация пользовательских запросов часто затягивалась на недели и месяцы, и к моменту появления программы информация, которую она предоставляла, часто оказывалась бесполезной.

    Над данными сетевой модели можно выполнять следующие действия :

    · внести запись в БД (в зависимости от типа включения запись может быть внесена в групповое отношение или нет);

    · включить запись в групповое отношение (связать запись с каким-либо владельцем);

    · переключить (связать подчиненную запись с записью владельца в том же групповом отношении);

    · изменить значение элементов предварительно извлеченной записи;

    · извлечь запись либо по значению ключа, либо последовательно в рамках группового отношения;

    · удалить – при удалении записи необходимо учитывать классы членства;

    · исключить из группового отношения (разорвать связь между записью владельца и подчиненной записью).

    Реляционная модель данных.

    Реляционной моделью называется база данных, в которой все данные, доступные пользователю, организованны в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами . Наглядной формой представления отношения является двумерная таблица. Таблица имеет строки (записи) и столбцы (колонки). Каждая строка имеет одинаковую структуру и состоит из полей. Строкам таблицы соответствуют кортежи, а столбцам – атрибуты отношения. Достоинство реляционной модели заключается в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились для пользователя основной причиной ее использования. Проблема же эффективности обработки данных этого типа оказались технически вполне разрешимыми. Основными недостатками являются: отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей. Примерами зарубежных реляционных СУБД являются: Visual FoxPro и Access (Microsoft).

    Основные элементы реляционной модели: Отношение – важнейшее понятие и представляет собой двумерную таблицу, содержащую некоторые данные. Сущность-объект любой природы, данные о котором хранятся в БД. Данные о сущности хранятся в отношении. Атрибуты-свойства, характеризующие сущность. В таблице он именуется и ему соответствует заголовок столбца таблицы. Домен-множество всех возможных значений определенного атрибута отношения. Схема отношения (заголовок отношения) список имен атрибутов. Первичный ключ (ключ отношения) атрибут отношения, однозначно идентифицирующий каждый из его картежей. Если кортежи идентифицируются только сцеплением значений нескольких атрибутов, то говорят, что отношение имеет составной ключ. Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным, его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами.

    Достоинства реляционной модели:

    Простота и доступность для понимания пользователем. Единственной используемой информационной конструкцией является "таблица";

    Строгие правила проектирования, базирующиеся на математическом аппарате;

    Полная независимость данных. Изменения в прикладной программе при изменении реляционной БД минимальны;

    Для организации запросов и написания прикладного ПО нет необходимости знать конкретную организацию БД во внешней памяти.

    Недостатки реляционной модели:

    Далеко не всегда предметная область может быть представлена в виде "таблиц";

    В результате логического проектирования появляется множество "таблиц". Это приводит к трудности понимания структуры данных;

    БД занимает относительно много внешней памяти;

    Относительно низкая скорость доступа к данным.

    Три составные части реляционной модели данных:

    § структурная

    § манипуляционная

    § целостная

    Структурная часть модели определяет, что единственной структурой данных является нормализованное парное отношение. Отношения удобно представлять в форме таблиц, где каждая строка есть кортеж, а каждый столбец – атрибут, определенный на некотором домене. Данный неформальный подход к понятию отношения дает более привычную для разработчиков и пользователей форму представления, где реляционная база данных представляет собой конечный набор таблиц.

    Манипуляционная часть модели определяет два фундаментальных механизма манипулирования данными – реляционная алгебра и реляционное исчисление. Основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

    Целостная часть модели определяет требования целостности сущностей и целостности ссылок. Первое требование состоит в том, что любое отношение должно обладать первичным ключом. Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать).

    10. Модель «сущность связь» ER-модель, нормализация данных.

    ER-модель (Entity-Relationship model) представляет собой высокоуровневую концептуальную модель данных, которая была разработана в 1976 году с целью упрощения задачи проектирования БД. Основные концепции модели «сущность-связь» включают типы сущностей, связи и атрибуты.

    Основной концепцией ER-моделирования является тип сущности, который представляет множество объектов реального мира с одинаковыми свойствами. Тип сущности характеризуется независимым существованием и может быть объектом с физическим (реальным) существованием или объектом с концептуальным (абстрактным) существованием.

    Каждый уникально идентифицируемый экземпляр типа сущности называется просто сущностью. Каждый тип сущности идентифицируется именем и списком свойств и классифицируется на два типа: сильный слабый. Существование слабого типа зависит от другого типа, сильного – не зависит.

    На использовании разновидностей ER-модели основано большинство современных подходов к проектированию баз данных (главным образом, реляционных). Модель была предложена Ченом в 1976г. Моделирование предметной области базируется на использовании графических диаграмм, включающих небольшое число разнородных компонентов. В связи с наглядностью представления концептуальных схем баз данных ER-модели получили широкое распространение в CASE- средствах, предназначенных для автоматизированного проектирования реляционных баз данных.

    Для моделирования структуры данных используются ER-диаграммы (диаграммы «сущность-связь»), которые в наглядной форме представляют связи между сущностями. В соответствии с этим ER-диаграммы получили распространение в CASE-системах, поддерживающих автоматизированное проектирование реляционных баз данных. Наиболее распространенными являются диаграммы, выполненные в соответствии со стандартом 1DEF1X, который используют наиболее популярные CASE-системы (в частности, ERwin, Design/IDEF, Power Designer). Основными понятиями ER-диаграммы являются сущность, связь и атрибут.

    Сущность

    Сущность - это реальный или виртуальный объект, имеющий существенное значение для рассматриваемой предметной области, информация о котором подлежит хранению. Если не вдаваться в подробности, то можно считать, что сущности соответствуют таблицам реляционной модели. Каждая сущность должна обладать следующими свойствами:

    1. иметь уникальный идентификатор;

    Любая сущность может иметь произвольное количество связей с другими сущностями.

    В диаграммах ER-модели сущность представляется в виде прямоугольника, содержащего имя сущности.